Innovative Approaches to Computer-Based Assessment, Part Four

For the past month, I've focused this blog on the role that computers can play in assessing students' mathematical knowledge. I've presented three Web Sketchpad-based examples of assessment with mathematical topics ranging from isosceles triangles, to the Pythagorean Theorem, to the slopes of perpendicular … Continue Reading ››

Innovative Approaches to Computer-Based Assessment, Part Three

Today there is no lack of outrage directed at the high-stakes standardized testing that has become so prevalent in the U.S. educational system. A recent opinion piece in The New York Times examines the backlash against the Common Core and lays the blame not on the standards themselves, but rather on the … Continue Reading ››

Innovative Approaches to Computer-Based Assessment, Part Two

In my previous post, I shared Dan Meyer's analysis of what's wrong with computer-based mathematics assessments. Dan focuses his critique on the Khan Academy's eighth-grade online mathematics course, identifying 74% of its assessment questions as focusing on numerical answers or multiple-choice items. This is a far cry from … Continue Reading ››

Can Computer-Based Assessment Model Worthwhile Mathematics?

Several weeks ago, Dan Meyer described his experience of completing 88 practice sets in Khan Academy's eighth-grade online mathematics course. His goal was to document the types of evidence the Khan Academy asked students to produce of their mathematical understanding. Dan's findings were disappointing: He concludes that 74% of the Khan Academy's eighth-grade questions were either multiple choice or required nothing more than … Continue Reading ››

Exploring Factor Rainbows

This week, I'm going to describe one of my favorite activities for introducing young learners to multiplication and factors. It comes from  Nathalie Sinclair, a professor of mathematics education at Simon Fraser University. In the interactive Web Sketchpad model below, press Jump Along to watch the bunny take 2 jumps of 4 … Continue Reading ››

Refutation in a Dynamic Geometry Context

Michael de Villiers teaches courses in mathematics and mathematics education at University of KwaZulu-Natal in South Africa. His website features a wealth of Dynamic Geometry-related books, articles, and sketches. He is the author of the Sketchpad activity module Rethinking Proof with The Geometer's Sketchpad. This blog … Continue Reading ››

A Quartet of Ellipse Constructions

It's the season for NCTM regional conferences, and I'm presenting sessions on conic section construction techniques in both Richmond and Houston this month. For those of you who can't attend, here's a peek at what I'm demonstrating. The 17th-century Dutch mathematician Frans van Schooten developed "hands-on manipulatives" centuries before the term became popular in math education circles. Below … Continue Reading ››

Tribute to Zalman Usiskin

On November 6 I had the honor of being one of the panelists in a Symposium Honoring Zalman Usiskin, held to honor Zal’s many years of contributions to mathematics education, from his groundbreaking 1971 textbook Geometry: A Transformation Approach (GATA) to his continuing activities today. My panel was supposed to discuss his work on … Continue Reading ››

Isosceles Triangle Puzzles

As readers of this blog can probably tell, I like puzzles. I especially enjoy taking ordinary mathematical topics that might not seem puzzle worthy and finding ways to inject some challenge, excitement, and mystery into them. This week, I set my sights on isosceles triangles. It's common to encounter isosceles triangles as supporting players in geometric proofs, but … Continue Reading ››

Dancing Unknowns: You Haven’t Seen Simultaneous Equations Like These!

When it comes to simultaneous equations, I like to push the bounds of conventional pedagogical wisdom. In an earlier post, I offered a puzzle in which elementary-age students solve for four unknowns given eight equations. Now, I'd like to present a puzzle that might sound even more audacious: Solving for ten unknowns. Oh, and … Continue Reading ››

The Key Curriculum Blog